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Abstract — The sensitivities of capacitance to the design 

parameters can be computed by either the derivative of 

potentials or the adjoint variables. By using the variational 

method for the electric flux computation, it can be shown that 

the right hand side of the adjoint system is identical to the right 

hand side of the original system. In combining the two methods, 

the second order sensitivities can be computed with reduced 

cost. First and second order derivatives of material matrix are 

accomplished with the help of the first and second order local 

jacobian derivatives. 

I. INTRODUCTION 

The sensitivity of the circuit elements to the design or 

process parameters has a great importance in the design, 

optimization and manufacturing of electrical and electronic 

devices. For example, in nano-scale IC systems, the 

sensitivity analysis helps the prediction and diagnosis of the 

system failure resulting from the variation, perturbation and 

uncertainty of the fabrication process and guides the robust 

design optimization to ensure the reliability and to increase 

the yield. 

In the extraction and characterization of the circuit 

parameters using the numerical technique such as the finite 

element method, it is well known that the computation of 

sensitivities via explicit derivative such as the differential 

method is expensive and inaccurate. Two methods can be 

applied to avoid the direct derivative using the differential 

method. One is to compute the sensitivity (derivatives) of the 

working variables. The other is to use the adjoint technique. 

The adjoint circuit method has been used to analyze the 

circuit sensitivities since about four decades [1][2]. It has 

also been applied in high frequency electromagnetic field 

analysis for the sensitivities of the circuit parameters 

[3][4][5]. In the case of scattering matrix of a multiport 

microwave device using edge element, it has been shown that 

the adjoint solution can be obtained from the field solution 

[3], which reduces the computation cost. Computation of 

sensitivities of working variables consists of solving the 

system equation with the right hand side the product of the 

derivative of the system matrix and the existing solution. 

This procedure can be easily accomplished with the help of 

the local jacobian derivative [6].  

The majority of previous work focuses on the first order 

sensitivities. However, in the systems which involve large 

variations, the first order sensitivity appears insufficient. The 

second order sensitivity becomes necessary. In this paper, we 

combine the two techniques to compute the second order 

capacitance sensitivities to the design or process parameters.  

II. ELECTROSTATIC FIELD AND CAPACITANCES 

To compute the capacitances of a multi-conductor 

system, we solve first the electrostatic field problem. The 

finite element discretization leads to the following matrix 

equation in terms of electric potential v:  

Sv)p(M  ,              (1)   

where the material matrix M is a function of the design 

(geometry or material) parameters, noted by p, and S the 

right hand side resulting from enforced Dirichlet condition. 

To compute the capacitance matrix of an n-conductor 

system, the system equation (1) is solved n-1 times, by 

applying respectively, one volt voltage excitation on one 

conductor and zero volt voltage on others.  

The capacitance between the conductor i and j (Cij) is 

computed by integrating the electric flux on a surface 

surrounding the conductor j (which equals the electric 

charges containing in the conductor).  Since the continuity of 

electric flux is weak in the formulation (1), it appears more 

convenient and accurate to compute the electric flux via the 

variational way [7]. Let’s denote by Fij the electric flux 

around the conductor j with the excitation on the conductor i, 

we have 

   ejnij n:)Mv(F ,         (2) 

where n is the node number. (Mv)n = 0 except for the set of 

nodes belonging to ej, the boundary of conductor j. For a 

unit excitation on the conductor i, Fij is in fact the 

capacitance Cij we look to compute. The expression (2) can 

be written in the matrix form: 

MvkC T

jij  ,             (3) 

where kj is a vector with unit entries for n  ej and zero 

elsewhere, and v is the potential solution with unit excitation 

on the conductor i. 

III. COMPUTATION OF FIRST ORDER SENSITIVITY 

There are two ways to compute the capacitance sensitivity. 

One is to compute the derivative of potential v, the other is 

solving adjoint equation. 

Taking the derivative on both sides of equation (1) with 

respect to a design (geometry) parameter pl, we have 
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If we know how to compute M/pl, once we get the 

solution v from (1), we can compute the right hand side of 

(4) and solve the linear matrix system equation (4) to get 

v/pl. The capacitance sensitivity can be then obtained by 
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taking the derivative of eq. (3): 
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For a system with m design parameters, equation (4) needs 

to be solved m times. It can be noted that matrix in (4) is 

exactly the same as in (1). In the case of solving (1) with the 

direct method, the solution of (4) can be simply obtained by 

the matrix-vector product. However, when solving the 

system equation using the iterative method, solving (4) 

multiple times may become expensive. 

An alternative way to compute the sensitivity is to use the 

adjoint method. Taking the derivative of Cij with respect to 

the potential v as the right hand side, we get the following 

adjoint system: 

dv

dC
uM

ij
 ,              (6) 

where u is the adjoint variable, and the right hand side, 

according to (3), is given by 

Mk
dv

dC
j

ij
 .              (7) 

After solving (6) and considering the relationship  
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the capacitance sensitivity is obtained by 
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providing M/pl is pre-computed. 

It can be noted that the right hand side of the adjoint 

equation (6), or eq. (7) per say, is nothing else but the right 

hand side of the original equation (1) with the unit voltage 

excitation on the conductor j. The solution of the adjoint 

variable u in (6) is hence the solution of the original equation 

which exists already when compute the full capacitance 

matrix of the multi-conductor system. The sensitivities of 

capacitance can be in that case computed for free. Here we 

reach the similar observation as in [3]. 

IV. SECOND ORDER SENSITIVITY   

Taking derivative of equation (4) with respect to a design 

parameter pm, we get 
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Knowing the potential v and the derivatives of potential to 

different geometry parameters, we can solve (10) to get the 

second order derivatives 
2
v/plpm. This might be however 

an expense procedure if the number of geometry parameters 

is important. 

To reduce the computation cost, we can use again the 

adjoint method. Taking the derivative of (9) with respect to 

pm, we have 
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                      (11) 

In (11), the potential v is obtained by solving eq.(1), the 

derivatives of the potential are obtained by solving (4) and 

the adjoint variable u is given by (6), which is the existing 

solution of (1) for full capacitance matrix solution of the 

multi-conductor system. 

The first and second order derivatives of material matrix 

M with respect to the design parameters p in (4), (9) and (11) 

are accomplished with the help of the first and second order 

local jacobian derivatives. 

V. EXAMPLE OF COMPUTATION 

The present method is validated by computing the 

capacitances of a three-conductor system. Fig. 1 compares 

the capacitances obtained by the finite element method and 

by the first and second order sensitivities, when the width of 

a conductor varies from 0.2um to 0.4um. It can be seen that 

results with the second order sensitivity approximation 

matches well the FEM results even for large variation.  

 

 

Fig. 1. Capacitance variation in function of width 
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